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Error Probability Bounds for Bit-Interleaved Space–Time
Trellis Coding Over Block-Fading Channels
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Abstract—In this correspondence, we investigate the error probability
bounds of a bit-interleaved space–time trellis coding (BISTTC) scheme,
which concatenates bit-interleaved coded modulation (BICM) with a
space–time trellis code (STTC). We focus on general block-fading chan-
nels, wherein each data packet or frame spans a number of independent
fading blocks. BICM applied to such channel environments can effectively
exploit both time and frequency selectivity, while a STTC maximizes the
spacial diversity order. The exact pairwise error probability (PEP) and
weight enumeration function (WEF) of BISTTC are used to evaluate
the error bound. Due to the concatenation of an outer error correction
code (ECC) and a STTC, the overall WEF of BISTTC is obtained by
combining the WEF of the outer code with that of the STTC through an
uniform interleaver. The main challenge here is to compute the WEF of
a STTC for block-fading channels with reasonable complexity. We rely
on constructing a composite state transition matrix based on a number of
single-step virtual trellises, each corresponding to an independent fading
block within a frame. We discuss how this approach reduces storage
and computational requirements in the bound analysis, compared to the
existing method of obtaining the state transition matrix through accumu-
lation of single-step transition matrices. The derived bound is applicable
to both spatially uncorrelated and correlated channels as well as to both
flat and frequency-selective block-fading channels. The bound is shown to
provide a reasonably close estimate of the simulated performance based on
the turbo equalizer-like iterative processing of soft information between
the STTC decoder and the ECC decoder.

Index Terms—Bit-interleaved coded modulation (BICM), bit-interleaved
space–time trellis coding (BISTTC), block fading, weight enumeration
function (WEF).

I. INTRODUCTION

Diversity techniques are effective in combating multipath fading
in wireless communication. Space–time coding schemes actively
investigated in recent years are designed to provide diversity gains
through two-dimensional coding over both the time and space di-
mensions [1]–[3]. In addition to maximizing the diversity order, the
space–time trellis code (STTC) of [1] also provides coding gains.
Space-time coding has also been specialized to orthogonal-frequency
division-multiplexing (OFDM) applications, wherein coding is effec-
tively applied in the frequency and space domains [4]–[6]. A somewhat
different category of space–time methods also exists that is based on
bit-interleaved coded modulation (BICM) [13] in conjunction with
spatial-domain multiplexing (SM) of the transmitted symbols [14].
The examples along this approach include [8]–[12]. The original
layered space-time method of [14] as well as its variations [15]–[17]
also fall into this category in the sense that the layered space–time
architectures typically assume outer coding and bit-level interleaving.
The basic idea behind the BICM-based space–time methods is that
spatial diversity is exploited indirectly through random distribution of
information bits over different transmit antennas made possible by the
interleaver operating on coded bits.
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In [18], the present authors considered the concatenation of BICM
with the existing STTC of [1]. The rationale for this scheme, dubbed bit
interleaved space–time trellis coding (BISTTC), is that while the STTC
ensures a maximum spatial diversity order, the presence of BICM will
help further exploit both time diversity and frequency diversity (in the
context of OFDM), when available. This scheme has practical merits
in that it allows a flexible system architecture built upon known and
available components. The comparative performance merits have also
been discussed in [18].

The objective of this paper is to derive an error probability bound for
such a BISTTC scheme over general block-fading channels, wherein
each transmitted data frame contains a number of independently fading
blocks. The error bound of the STTC itself has been investigated in the
literature for fully interleaved (fast) fading channels [19], [20], qua-
sistatic fading channels [21], [22], and some general cases including
both types of fading channels [23]. Although the standard union bound
is shown to be tight in fast fading channels, it tends to be very loose in
quasistatic fading channels due to the lack of dominant error events
in such channels [24]. Some methods have been suggested to alle-
viate this problem. In [25] an expurgated bound was proposed, al-
though the expurgation alone is often insufficient to generate a tight
bound in quasi-static channels. In [23] an approximated error bound
was used that only considered error events with limited lengths. How-
ever, this truncated bound is no longer an upper bound, and conver-
gences rather slowly to the actual union bound for quasistatic chan-
nels. Based on the idea originated from [24], another “limit before
averaging” type technique was independently employed in [21] and
[22], trying to tighten the union bound without truncation. This method
results in much tighter union bounds, but requires large amounts of
storage and computation when the block length is large and/or the as-
sociated STTC trellis is complex, since in these scenarios the number
of error events to be examined grows large and the distance informa-
tion for every error event with different distance needs be recorded.

To obtain error bounds for BISTTC, we need to find the weight enu-
meration function (WEF) of the outer code, compute the pairwise error
probability (PEP) for error events, find the conditional WEF (CWEF)
of the STTC, and then combine them appropriately. The combination
is done through the notion of the uniform interleaver [26], which has
been shown to be effective in characterizing the interleaver behavior
in concatenated schemes. Since the WEF of the outer code such as
the convolutional code (CC) is well established [26], the main chal-
lenge here is to handle the error events of the STTC in block-fading
channels. In this paper, we also rely on the limitation approach, but in-
troduce some new ideas that allow reduced computational and storage
requirements in evaluating the bound for block-fading channels. Our
approach starts with the definition of the error event metric based on
Craig’s formulation for the Q-function [30]. We then observe that for
a group of error events corresponding to a given input weight but pos-
sibly having different metrics, it is the scalar “group metric” which
is actually used in the bound evaluation. This group metric is a sum-
mation of the metrics of those error events belonging to that group
weighted by their multiplicities. In this way the individual metrics as
well as their multiplicities, which are the CWEF coefficients of the
STTC, need not be explicitly enumerated; only the metric summation
needs be recorded for subsequent processing. Therefore, the required
storage and computational complexity are greatly reduced. In prac-
tice the metric for an error event can be decomposed into single-step
state transition metrics which are associated with the state transition
matrix of a STTC, and thus can be computed through a matrix accu-
mulation process. For block-fading channels under investigation, we
compute a composite state transition matrix to take into account the
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Fig. 1. Block fading channel model in the OFDM context.

Fig. 2. System model of BISTTC.

time selectivity. The composite state transition matrix is obtained from
a number of state transition matrices corresponding to the individual
fading blocks within the frame. To obtain the state transition matrix
for each fading block, a notion of the single-step virtual trellis is in-
troduced. This idea was also mentioned in our previous work [18],
but here the derived bounds are presented in detail as well as gener-
alized to both flat and frequency-selective channels and to both spa-
tially independent and correlated fading channels. As will be shown,
the derived bounds provide good approximations to the error rate sim-
ulation results of the actual system employing a turbo-equalizer-like
iterative demodulation/decoding scheme in above channel conditions.
We note that the computational load of these bounds is still intense for
complex STTC’s achieving higher transmission rates. The difficulty of
directly constructing such STTC’s with a large constellation and/or a
large number of states has also been recognized in [1], where the au-
thors suggested a design of such STTC’s through multi-level coding
[27]. Of course, while computationally intensive, the bound still allows
estimation of error probabilities in the high SNR region where a simu-
lation study is not feasible.

The outline of this correspondence is as follows. In Section II,
the system model of BISTTC is introduced. In Section III, the error
bound is derived for block-fading channels. Simulation and numerical
results are presented in Section IV. Finally, conclusions are drawn in
Section V.

II. SYSTEM MODEL

A. General Block Fading Channel Model

Here we adopt a general block-fading channel model of [28] that as-
sumes that a given transmitted frame may span multiple independent
fading blocks, each of which lasts for NB symbols, as illustrated in
Fig. 1. We use Tc and Ts to denote the channel coherence time and
OFDM symbol duration, respectively. Also assume that a data frame
spans � independent fading blocks, during each of which the channel
is static for � OFDM symbol periods, i.e., Nc = �NB = ��M ,
where M denotes the number of subcarriers in an OFDM symbol.

In the following, we will use L to specify the number of taps in a
tapped-delay-line channel model [29]. Note that when L = 1, the
model corresponds to flat fading and subsequently M = 1 is implied
since there exists no motivation for OFDM.

B. System Model

In Fig. 2, a BISTTC scheme is depicted with nT transmit and mR

receive antennas. It is straightforward to see that BISTTC concatenates
an outer error-correcting code (ECC) with an inner STTC, and at the
receiver iterative decoding and demodulation (IDD) can be performed
in a “turbo” fashion to further improve the performance.

The BISTTC codeword can be represented by 3-D indices: xnip(k),
1 � k � M , 1 � n � nT , 1 � i � � and 1 � p � � , denotes the
symbol transmitted on the kth subcarrier from the nth transmit antenna
during the pth OFDM symbol within the ith fading block. In the context
of OFDM, the frequency response of the channel between transmit an-
tenna n and receive antennam, for the kth subcarrier of the pth OFDM
symbol within the ith fading block, Hnm(i; p; k), can be computed as

Hnm(i; p; k) =

L

l=1

gnm(i; l)e�j2�(k�1)(l�1)=M ; (1)

for 1 � k � M , where gnm(i; l) denotes the lth-tap coeffi-
cient of the impulse response of the channel between the transmit
antenna n and the receive antenna m during time block i, and
they can be arranged in vector form as g

i
m = . . . ;gilTm ; . . .

T

with g
il
m = [g1m(i; l); . . . ; gn m(i; l)]T , 1 � l � L. Note that

Hnm(i; p; k)’s are invariant with respect to p because in block-fading
channels the time response gim’s are constant within the ith block.

III. ERROR BOUND PERFORMANCE ANALYSIS

Every codeword of BISTTC is a sequence composed of STTC sym-
bols, so the error events analysis of BISTTC basically follows that
of the STTC. However, the concatenation with the outer code via an
interleaver changes the weight distribution of the input sequence to
the STTC encoder and manages to reduce the frequency at which the
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small-distance error events occur. Accordingly the weight enumera-
tion function (WEF) of the outer code also need be taken into account.
Due to the difficulty of characterizing a specific interleaver behavior
in the analysis, the popular notion of the uniform interleaver [26] is
employed, which has been shown to be very effective in analyzing the
interleaver effect in concatenated schemes.

It is well known that the union bound on the frame error probability
Pf may be calculated as [22]:

Pf �
H

1

jSj
x x̂ 6=x

P (x! x̂jH)f(H) � dH (2)

where jSj denotes the number of BISTTC codewords, and f(H) is the
joint probability density function (pdf) of all channel coefficients con-
tained in H. Usually the Chernoff approximation to P (x ! x̂jH)
is sufficient for PEP analysis and design purposes [1]; however, in
order to tighten the error bound, an exact evaluation of the conditional
PEP is employed here based on the Craig’s formulation for Q(x) [30],
Q(x) = 1

�

�=2

0
exp(�x2=2 sin2 �)d�, as was done in [19]. Accord-

ingly, (2) becomes

Pf �
H

1

jSj
x x̂6=x

1

� 0

exp �
�(x; x̂)Es

4N0 sin
2 �

� d�

f(H) � dH (3)

where the distance �(x; x̂) is defined as

�(x; x̂) =

�

i=1

�

p=1

M

k=1

m

m=1

n

n=1

Hnm(i; p; k)�
n
ipk

2

(4)

with the symbol error �nipk = xnip(k)� x̂nip(k).
In the standard union bound approach, (3) is evaluated by first per-

forming averaging with respect to H before doing the summation. As-
suming a Rayleigh distribution and following the standard diagonaliza-
tion approach of [1], we would have

Pf �
1

� 0

1

jSj

�
x x̂6=xR(x;x̂)

1 + �ii
Es

4N0 sin
2 �

�m

� d� (5)

where �ii , 1 � i � �, 1 � i0 � nTL, denotes the eigenvalue of the
“codeword difference matrix” for each pair (x; x̂) [18], and R(x; x̂)
is the set of (x; x̂) which will result in nonzero eigenvalues.

For fast fading channels, (5) can be computed based on the transfer
function approach [19]. The union bound is tight in this case, but for
general block-fading channels including the quasistatic channels, the
union bound (5) would be very loose. Therefore, a limitation method
can be applied to (3) as in [22], to obtain

Pf �
H

min 1;
1

� 0

1

jSj

�
x x̂6=x

exp �
�(x; x̂)Es

4N0 sin
2 �

d� � f(H)dH: (6)

The basic idea behind the limitation in (6) is that the conditional union
bound is only to be used when it gives reasonable results (such as less
than 1); otherwise it is upper-bounded by 1. Due to the limitation, the
order of the integration with respect toH and the summation in (6) can
not be interchanged; a multidimensional numerical integration has to
be carried out.

Furthermore, BISTTC under consideration in this paper employs ex-
isting STTC’s of [1], which are geometrically uniform according to

the Forney’s criterion [31]. Thus the error bound can be evaluated
assuming that an arbitrary codeword such as the all-zero codeword
is transmitted, as was done in [19]. Then in evaluating (6) only the
nonzero codewords instead of all pairs of codewords need to be con-
sidered. Denote� � �(0;x) as the Euclidean distance between code-
word x and the all-zero codeword. Then the overall WEF of BISTTC
is defined as

BC(Z) =
�

A�Z
� (7)

where the multiplicity A� denotes the number of codewords with dis-
tance�. Similarly, the conditional WEF (CWEF) of BISTTC is defined
as

BC
w (Z) =

�jw

Aw;�Z
� (8)

where Aw;� denotes the number of codewords with distance � gen-
erated by an information bit sequence of weight w, and the set “�jw”
only picks up those �’s corresponding to a particular w. In contrast to
the way the WEF is traditionally defined, the WEF given here is based
on the Euclidean distance instead of Hamming distance. The bound (6)
is now rewritten as

Pf �
H

min 1;
1

� 0

BC(Z)jZ=z d� f(H)dH (9)

where z0 = exp � E
4N sin �

, and the error bound for BER as

Pb �
H

min 1;
1

� 0 w

w

N
� BC

w (Z)jZ=z d� f(H)dH (10)

where N is the frame length in number of information bits. Note that
in flat-fading cases the variable of integration would change fromH to
g.

To evaluate the bounds (9) and (10), we need to find the multiplicities
A� and Aw;�, and then substitute Z = z0 into BC(Z) and BC

w (Z)
to get BC(z0) and BC

w (z0), respectively. Since BISTTC is a concate-
nated scheme, its WEF and CWEF can be conveniently obtained by
combining the WEF and CWEF of the outer code with the CWEF of
the STTC through an uniform interleaver [26], respectively. Let AO

d

andAOw;d denote the number of outer codewords with Hamming weight
d and the number of such codewords generated by an input information
bit sequence of weight w, respectively. Similarly, let AST

d;� denote the
number of STTC codewords with distance � generated by an input bit
sequence of weight d, and BST

d (Z) = �jdA
ST
d;�Z

� be the CWEF
of a STTC.

Next we take an example to illustrate howBC(z0) is computed. Fol-
lowing [26], first we obtain the WEF of BISTTC as

BC(Z) =
d

AOd � B
ST
d (Z)=

N=Ro

d

=
� d

AOd � A
ST
d;�=

N=Ro

d

A

Z� (11)

where Ro is the code rate of the outer code, and then compute BC(z0)
by substituting Z = z0 into BC(Z). Equation (11) clearly shows that
both sets of coefficients AOd ’s and ASTd;�’s need be explicitly enumer-
ated to obtain the WEF of BISTTC.

We can alternatively compute BC(z0) by

BC(z0) =
d

AOd � B
ST
d (z0)=

N=Ro

d
(12)
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Fig. 3. Matrix accumulation process to compute B (z ) for STTC.

where

BST
d (z0) =

�jd

AST
d;�M�(�) (13)

with a metric M�(�) exp � ��E
4N sin �

. The approaches of (11)
and (12) are conceptually equivalent, but in actual computation, the
method of (12) directly calculates BST

d (z0) as a scalar summation
through the state transition diagram, and thus coefficients AST

d;� need
not be explicitly enumerated. Similarly, BC

w (z0) can be computed as

BC
w (z0) =

d

AO
w;d � B

ST
d (z0)=

N=Ro

d
: (14)

This method results in a great reduction of required storage and com-
putational complexity, as will be elaborated in later sections.

Assuming an outer convolutional code (CC), its WEF and CWEF
can be conveniently obtained from its state diagram by an effective al-
gorithm discussed in [26]. Thus the key issue in evaluating (12) and
(14) is to find BST

d (z0), which is a weighted summation of the metrics
M�(�)’s for certain error events. Next we shall focus on the decompo-
sition of M�(�) into a product form, and how to compute BST

d (z0).

A. Decomposition of M�(�)

Following the approach in [1], the distance � of (4) corresponding
to a particular error event can be computed as

� =

�

i=1

N

t=1

m

m=1

H
it
m
H
DitH

it
m (15)

where Hit
m is a vector containing those Hnm(i; p; k)’s in (4), t is the

virtual-time index [6]: t = (p � 1)M + k, 1 � p � �; 1 � k �
M , and Dit is the codeword difference matrix during the ith block
corresponding to the index t.

Substituting (15) into M�(�) in (13), we will have

M�(�) =

�

i=1

N

t=1

m

m=1

exp �
Es �H

it
m
HDitH

it
m

4N0 sin
2 �

: (16)

Note that in the simpler case of flat-fading channels, Hit
m = gim, is

fixed within the ith fading block, so (16) becomes

M�(�) =

�

i=1

N

t=1

m

m=1

exp �
Es � g

i
m
HDitg

i
m

4N0 sin
2 �

; (17)

and a complete derivation following that for flat-fading channels has
been presented in [18].

B. Steps to Compute BST
d (z0) for a STTC

A straightforward way to evaluateBST
d (z0) is, for a given �, to com-

pute M�(�) for each error event and count its multiplicity. However,

in practice the exhaustive search for all error events need not be per-
formed; instead BST

d (z0) can be evaluated through the state diagram
of a STTC. The explicit expression of M�(�) in a product form makes
it conveniently associated with the state transition matrix, which can
be obtained from the state diagram of a STTC. In [22] the metric is ob-
tained in a similar manner but from the extended state diagram, which
enumerates every pair of error events under the assumption that any
codeword can be transmitted. However, since the STTC considered
here is geometrically uniform, an equivalent approach based on the
state diagram can be used, which only enumerates nonzero error events
under the premise that the all-zero codeword is transmitted [19], re-
sulting in much lower computational complexity. We shall illustrate in
the following how the BST

d (z0) of a STTC over general frequency-se-
lective block-fading channels can be obtained. The result for flat-fading
channels will also be mentioned as a special case.

The evaluation of BST
d (z0) via the state diagram of a STTC is to

accumulate the state transition matrix step by step, which is basically
a reverse process of decomposing M�(�). The multiplicities associ-
ated withM�(�)will be automatically captured during the process and
are not counted explicitly in the process. For generalized block-fading
channels, this evaluation process can be described by a flow chart in
Fig. 3, and computation details can be found as follows.

1) Step 1: Consider a typical STTC scheme in [1] with 2v states. The
single-step state transition matrix of the STTC for the slot hi; ti,
1 � i � �, 1 � t � NB is given by Sit(I; �) sabit (I; �) ,
where I is a dummy variable whose exponent will serve to collect
the Hamming weight of the input bits to the STTC, and the entry
at row a and column b, sabit (I; �), a; b 2 f1; 2; . . . ; 2vg, indicates
the single-step transition from the state sa to the state sb during
slot hi; ti and is labeled by

sabit (I; �) =
Id �M

�
(�); if sa ! sb exists

0; otherwise
(18)

where M
�

(�) and dab denote the distance metric and input
Hamming weight associated with the transition sa ! sb, respec-
tively. For a given � the M

�
(�) is a scalar. In fact Dab

it does

not change with t, but in frequency-selective fading channels,Hit
m

varies with t, and thus sabit (I; �) still need be computed individu-
ally for each t.

2) Step 2: Next we compute the composite NB -step state transition
matrix of the STTC for the ith block, Si(I; �). It is easy to see
that for a given �, the entry at row a and column b of Si(I; �),
sabi (I; �), is a polynomial in I whose exponents are obtained by
collecting the exponents of certain I-terms in Sit(I; �)’s entries,
and whose coefficients are the accumulated scalar multiplication
of the coefficients of the corresponding I-terms. Conceptually,
sabi (I; �) represents an aggregation of some “partial” error events,
each of which starts from sa and ends at sb within the ith block.
Consequently, the NB -step trellis of the ith block is condensed
into a one-step “virtual trellis” with the branch metric of transition
sa ! sb labeled as sabi (I; �). See Fig. 4.
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Fig. 4. Virtual trellis of STTC for block-fading channels.

To be more specific, the aggregated entry sabi (I; �) can be ex-
pressed as

sabi (I; �) =

d

Id �Md (�) (19)

where

Md (�) =

� jd

AST

d ;� M
�

(�): (20)

For a given �, every Md (�) is still a scalar. In actual computa-

tion AST

d ;�
and M

�
(�) need not be explicitly enumerated;

the coefficient associated with Md (�)will be automatically ob-
tained when the polynomial multiplication is done. Therefore,
for a group of error events having a particular dabi , we do not
have to store the distance information�ab

i ’s and the multiplicities
AST

d ;�
’s individually as in [22]; instead we only need store the

scalar metric summation Md (�) for that group.
This approach has two advantages. First, the reduction of storage
requirement is obvious. Second, as will be shown next, the state
transition matrices Si(I; �)’s of different fading blocks need be
further multiplied to obtain the overall state transition matrix of
the whole frame. So a reduced number of terms to be summed in
each entry of Si(I; �) will result in a reduced number of multipli-
cations needed in the subsequent computation. For a STTC with a
large number of states and/or a channel with a large block length,
the reduction in storage and computational complexity of this al-
gorithm would be large.

3) Step 3: Now we compute the overall state transition matrix of
the STTC for the whole frame, i.e., S(I; �). The entry at row a
and column b of S(I; �), sab(I; �), will carry the information on
those “complete” error events starting from sa and ending at sb
within the given frame. In practice, all error events both start from
and terminate to the zero state, and thus we only need keep the
(1; 1) entry of S(I; �). Dropping the superscript indicating the
state transition for the moment, i.e., s(I; �) � s11(I; �), we write

s(I; �) =
d

Id �Md(�) (21)

where

Md(�) =
�jd

AST
d;�M�(�): (22)

As explained before, this entry is an enumeration by groups of all
error events starting and ending at the zero-state, with each group
sharing a particular input weight d, and each “group metric” being
the summation of the metrics for those error events belonging to
that group. Arranging them according to d, the coefficients of Id,
Md(�)’s, will be the sets of BST

d (z0) in (13). Then we can com-
bine these BST

d (z0)’s with the WEF and CWEF of the outer code
as in (12) and (14), and thus obtain the BC(z0) and BC

w (z0) of
BISTTC to evaluate the error bounds.

C. Numerical Considerations

1) Integration: To evaluate the error bounds, the multi-dimensional
integration with respect to H is done numerically. Although there
are efficient routines available, generally we prefer the Monte Carlo
method due to its simplicity, especially when the number of integration
variables grows. In this way, the variables of integration contained in
H or even g need not be independent, as we do not intend to decom-
pose the multidimensional integral into a product of one-dimensional
integrals. So the bounds derived here are naturally generalized to be
applicable to both uncorrelated and correlated fading channels.

2) Expurgation: The expurgated bound [25] is usually used, since
it only counts the simple error events diverging from and reemerging
to the zero state for only once so that results in computation reduction,
while still serving as an upper bound [22]. However, here we do not
use the expurgation approach for the following reasons. First of all, in
a concatenated system like in [26], there is no guarantee that simple
error events in the inner trellis will correspond to likely error events in
a global sense. Furthermore, even for the inner code only, due to block
fading, we simply have no means to track the frame-wise simple error
events. This is because that the error events for the whole frame are not
directly enumerated; each frame-wise error event is rather made up of
some block-wise error events concatenated to one another.

3) Truncation: In practice, counting all error events is unnecessary.
With the limitation method applied, the error bound based on a few
error events converges to a stable value. With truncation and limitation,
this particular bound may not be conceptually considered as an upper
bound, however, in practice it will serve as a reasonably good perfor-
mance estimate of the simulated system. Theoretical explanation of this
convergence behavior is under investigation.

IV. SIMULATION AND NUMERICAL RESULTS

The BISTTC example investigated in this paper is the concatena-
tion of an outer CC (7; 5) with a four-state QPSK STTC of [1]. We
choose nT = 2, mR = 1, and an interleaver size of 1024 throughout
the investigation. The figure of merit here is based on the block error
probability (BLEP), defined as the normalized frame error rate (FER):
BLEP = FER=�. The FER is defined as the probability that at least
one bit error occurs within a frame. Due to the normalization, BLEP
becomes independent of the parameter �, allowing direct and reason-
able performance comparison among situations with different � values.
The signal-to-noise ratio (SNR) is defined as SNR = nTEs=N0.

Both spatially uncorrelated and correlated channels are considered.
Also, both frequency-flat and frequency-selective fading channels are
investigated. In the frequency-selective fading case, OFDM with M =
64 is assumed. A multiray equal-power channel model is used, in which
each of theL channel taps is an i.i.d complex Gaussian random variable
with zero-mean and variance 2�2l = 1=L. We assume that the channel
response is invariant for at least one OFDM symbol period.
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Fig. 5. Bound and simulation of BISTTC over spatially uncorrelated flat-fading channels, L = M = 1.

Note that the simulated performance of BISTTC is based on IDD
scheme, which is a suboptimal algorithm but may approach the
maximum-likelihood (ML) performance with sufficient iterations (five
iteration in this paper). For comparison, the error bound derived in
Section III is based on ML decoding.

A. Spatially Uncorrelated Frequency Flat-Fading Channels

The results are shown in Fig. 5. For fast fading, only the standard
union bound is shown since it is indistinguishable from the improved
bound of (9). Although not shown, for block-fading channels with a
short block length, i.e., NB < 10 symbols, the union bound still pro-
vides good estimate for the error probability. However, for block-fading
channels with more realistic block lengths, such as � = 4, � = 128
and � = 1, � = 512 (quasistatic), the standard union bounds diverge.
On the other hand, as shown in Fig. 5, the derived upper bound approx-
imates the actual performance (based on IDD) accurately.

B. Spatially Uncorrelated Frequency Selective-Fading Channels

We consider a multipath-fading channel with L = 4. OFDM is used
to remove the intersymbol interference (ISI) and convert the channel
into parallel flat-fading channels. Note that in this case the variables of
integrationH in (9) are correlated for different subcarriers of an OFDM
system, but still assumed to be spatially uncorrelated among transmitter
antennas. The performances with different � are shown in Fig. 6, where
the performance curve of L = 1, � = 1 is also shown as a reference. It
can be seen that in the frequency-selective fading channel, the derived
bound provides an estimate of the IDD-based actual error rate with the
accuracy of within approximately 1 dB of SNR, for both quasistatic
(� = 1) and block (� = 8) fading channels. The plots clearly indicate
that when more time or frequency diversity is available the error rate
performance is improved [18].

C. Spatially Correlated Fading Channels

Let us now consider a more general case, where the channels could
be correlated between different transmit–receive antenna pairs. Exam-

ples of BISTTC on both the flat fading (L = 1) and frequency-selec-
tive fading (L = 4), quasistatic (� = 1) and block fading (� = 4; 8)
channels are considered. The correlation factor r is specified by

E g
il

1 g
ilH

1 =
1 r

r 1
for 1 � i � �; 1 � l � L (23)

where gil1 = [g11(i; l); g21(i; l)]
T is defined in Section II-B. Fig. 7

shows the result for r = 0:85, which indicates that while the accuracy
in estimating the error probability is reduced, the derived bounds again
reflect the general trend for the error probability quite well. The en-
larged gap between the simulated performance and ML upper bound is
possibly due to the fact that IDD degrades more in correlated channels.
Both the bound and the simulated curves show that the performance
is improved with increased time and frequency diversity orders, as ex-
pected. The error rate performance of a STTC on such spatially corre-
lated flat-fading channels has also been observed in [22].

D. Discussion

As indicated in Section III-C, although error events with length up
to NB need be examined in the algorithm for obtaining the WEF of
STTC, we find from our simulation that it is usually sufficient to only
enumerate those error events with length up to 30 symbols. The value
might be higher when going for a more complex STTC, but the bounds
will still converge possibly due to the use of limitation method.

BISTTC examined in this paper is composed of a simple CC and
4-state QPSK-based STTC. The bound for BISTTC based on more
complex STTC, such as 16-state 16QAM-based STTC, can also be
evaluated. However, beyond that, the computational load grows and
may get out of hand, since the number of error events need be exam-
ined becomes too high even with the error event truncation. The main
bottleneck is the number of states and the constellation size, which de-
termine the dimension and the number of nonzero entries of the state
transition matrix for STTC, respectively. Note that nT can be extended
to larger than 2, and the computational load of obtaining the bound will
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Fig. 6. Bound and simulation of BISTTC over spatially uncorrelated frequency-selective fading channels, L = 4, M = 64.

Fig. 7. Bound and simulation of BISTTC over spatially correlated fading channels with r = 0:85.

not increase since the trellis complexity of STTC does not change by
merely increasing nT .

On the other hand, it should be noted that more complex STTCs be-
yond 16-state 16QAM are rarely used in real systems, since the design
becomes highly impractical in any case. For STTCs in practical use,
the error bound derived here provides an efficient means for perfor-

mance analysis, especially for the error rate regions where simulation
becomes infeasible.

V. CONCLUSION

We have conducted the error bound analysis of an OFDM-based
BISTTC scheme which concatenates BICM with known STTCs, over
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the generalized block-fading channels, wherein a single uninterrupted
transmission of data stream encounters a number of independent block
fading modes. A limitation method has been utilized to prevent the stan-
dard union bound from diverging. To evaluate the bounds, the exact
PEP and the overall WEF of BISTTC have been used. The WEF of
BISTTC can be obtained by combing the WEF of the outer code and
the CWEF of STTC through an uniform interleaver. A reduced-com-
plexity algorithm is derived to obtain the CWEF of the STTC through
its single-step state transition matrix. The idea is based on constructing
a one-step virtual trellis for each fading block in the frame, from which
a block-specific state transition matrix is created that will in turn be
used to compute the overall state transition matrix for the frame. The
derived bound is shown to be able to reasonably capture the simulated
performance of BISTTC, in both spatially uncorrelated and correlated
as well as flat- and frequency-selective block-fading channels.
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